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Abstract
We have numerically simulated quantum tomography of single-qubit and two-qubit quantum
gates with qubits represented by mesoscopic ensembles containing random numbers of atoms.
Such ensembles of strongly interacting atoms in the regime of Rydberg blockade are known as
Rydberg superatoms. The stimulated Raman adiabatic passage (STIRAP) in the regime of
Rydberg blockade is used for determining Rydberg excitation in the ensemble, required for the
storage of quantum information in the collective state of the atomic ensemble and
implementation of two-qubit gates. The optimized shapes of the STIRAP pulses are used to
achieve high fidelity of the population transfer. Our simulations confirm the validity and high
fidelity of single-qubit and two-qubit gates with Rydberg superatoms.
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1. Introduction

Neutral atoms are promising candidates for building
quantum computers, since they meet all the DiVincenzo
criteria for qubits [1]. A large array of optical dipole traps,
loaded with single atoms, can be used as a scalable quantum
register [2, 3]. However, single-atom loading of the optical
dipole traps remains technically challenging, and unavoid-
able single-atom losses in the optical dipole traps inevitably
lead to computational errors. Another approach is based on
the storage of quantum information in the collective states
of mesoscopic atomic ensembles or superatoms [4].
Quantum information with Rydberg atoms commonly
exploits the effect of Rydberg blockade, when only one
atom in the ensemble of strongly interacting atoms can be
excited into a Rydberg state by narrow-band laser excitation
[4, 5]. These ensembles, known as Rydberg superatoms
[4, 6, 7], can be considered as effective two-level systems
with enhanced Rabi frequency W = W N0 , where W0 is a
single-atom Rabi frequency, and N is the number of inter-
acting atoms in the ensemble. Collective Rabi oscillations

have been observed for two atoms [8, 9] and for large
atomic ensembles [10–12]. One of the most important
drawbacks of superatom qubits are the fluctuations of the
number of atoms in the ensemble due to random loading of
optical dipole traps. This makes it difficult to implement
high-fidelity quantum gates due to fluctuations of the col-
lective Rabi frequency Ω.

In our recent works we proposed overcoming this dif-
ficulty by using adiabatic passage and Rydberg blockade for
deterministic single-atom Rydberg excitation [13] and
dynamic phase compensation [14, 15]. Schemes of single-
qubit and two-qubit gates for mesoscopic qubits have been
proposed [14, 15]. The aim of the present work is to confirm
the validity of these schemes by numeric simulation of
quantum tomography, and to estimate the maximum fidelity
of the quantum gates which can be achieved with our
approach using mesoscopic qubits. Quantum tomography is
a powerful technique used for full reconstruction of the
properties of quantum states and quantum processes using a
sequence of specific measurements over qubits [16–19].
This technique has been successfully implemented in a
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number of experiments with trapped ions [20, 21], super-
conducting qubits [22], nitrogen-vacancy qubits [23],
nuclear magnetic resonance (NMR) systems [24], single
photons [25], etc. In this paper we have performed numeric
simulations of single-qubit and two-qubit states and process
tomography with qubits represented by atomic ensembles
containing N= 1–4 interacting atoms in the regime of
Rydberg blockade.

This paper is organized as follows. In section 2 we dis-
cuss the optimized schemes of quantum gates based on
adiabatic passage and Rydberg blockade. Section 3 is devoted
to numeric simulation of single-qubit and two-qubit quantum
process tomography. In section 4, possible error sources are
discussed. A review of single-qubit and two-qubit state and
process tomography for two-level qubits is presented in the
appendix.

2. Quantum gates based on optimized double
adiabatic passage

Our approach for building a quantum register is based on an
array of randomly loaded optical dipole traps, as shown in
figure 1(a). We use a stimulated Raman adiabatic passage
(STIRAP) technique [27] for determining single-atom Rydberg
excitation in a regime of a Rydberg blockade [13]. This tech-
nique exploits a counter-intuitive sequence of overlapping laser
pulses in a three-level system at two-photon resonance, as
shown in figure 1(b). Similar results can be obtained by using
single-photon adiabatic excitation with chirped laser pulses
[13, 28–30]. Our scheme of quantum gates is based on a
double adiabatic sequence, shown in figure 1(c), for laser
excitation and subsequent de-excitation of the single Rydberg
atom in the ensemble [13–15]. High fidelity quantum gates

Figure 1. Scheme of a quantum register based on qubits represented by mesoscopic atomic ensembles. (b) Scheme of the typical energy
levels for single-atom Rydberg excitation using STIRAP. (c) Shapes of the optimized STIRAP pulses [26]. (d) Comparison of the error
- P1 1 of population transfer for Gaussian and optimized STIRAP sequence. (e) Time dependence of the probability P1 of single-atom

Rydberg excitation during double STIRAP sequence in mesoscopic atomic ensembles for different number of atoms N = 1, 2, 5. (f) Phase of
the probability amplitude of the ground state of the mesoscopic ensemble.
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require a high fidelity of Rydberg excitation, but commonly
used STIRAP techniques with Gaussian pulses usually provide
infidelity larger than 10−4 even in theory. The fidelity of the
population transfer can be improved by optimization of the
shapes of STIRAP pulses, as proposed in [26].

We have used the following shapes of the optimized
STIRAP pulses from [26]:
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[ ( )]l+ - -t T1 exp 1 . Following [26], we have chosen

=T T20 , n = 3, and l = 4. In our calculations the Rabi
frequency for both pulses is ( )pW =2 50 MHz0 , detuning
from the intermediate state is ( )d p =2 200 MHz, and

m=T 2 s0 is the time parameter for a hyperGaussian function
( )F t which determines the pulse duration. The positions of

the pulses are defined by m= -t 4 s1 and m=t 4 s2 .
We have compared the fidelity of population inversion of

the optimized STIRAP scheme with the conventional Gaus-
sian pulses:
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with m=t 1 s1 , m= -t 1 s2 and t m= 1 s.
A comparison of the numerically calculated fidelity of

single-atom Rydberg excitation in the atomic ensemble con-
sisting of N atoms for Gaussian and optimized pulses is
shown in figure 1(d). We have solved a Schrödinger equation
for the probability amplitudes in a quasimolecule which
consists of N three-level atoms, interacting with two laser
fields. A perfect Rydberg blockade was considered in the
simulations by removing all quasimolecular states with more
than one Rydberg excitation. The finite lifetimes of inter-
mediate and Rydberg states have not been taken into account
(this assumes short interaction times compared to lifetimes).
The optimized pulse shapes allow substantial reduction of the
infidelity of single-atom Rydberg excitation, which is kept
below 10−5 for almost all cases, as shown in figure 1(d).

The time dependences of the probability P1 of single-
atom Rydberg excitation, and of the phase of the probability
amplitude of the ground state in the atomic ensemble inter-
acting with two optimized STIRAP sequences are shown in
figures 1(e) and (f), respectively. The ensemble returns to the
ground state after the end of the second STIRAP sequence,
and the phase of the ground state wavefunction is preserved,
but only in the case when the sign of the detuning from the
intermediate excited state is switched between two STIRAP
sequences [14, 15], as shown in figure 1(c). The phase con-
servation allowed us to develop the schemes of high-fidelity
single-qubit and two-qubit quantum gates with mesoscopic
atomic ensembles [14, 15] shown in figure 2.

The idea behind these ensemble gates is based on the fol-
lowing considerations: quantum information can be stored in the
hyperfine sublevels of the ground state of alkali-metal atoms,

Figure 2. (a) Scheme of single-qubit rotation for a mesoscopic atomic ensemble with random number of atoms. Pulses 1–5 act between the
qubit states ∣ ñ0 , ∣ ñ1 and the Rydberg states r0 and r1. Pulses 2 and 4 are two-photon STIRAP sequences with opposite signs of the detuning
from the intermediate state. Pulses 1 and 5 are coherent single-atom π and p3 pulses. Pulse 3 is a microwave or Raman transition between
Rydberg states r0 and r1 with arbitrary area θ and phase f. Only one Rydberg excitation in the ensemble is allowed due to Rydberg blockade.
(b) Scheme of CNOT-type two-qubit gate with two mesoscopic atomic ensembles [15]. Only one Rydberg atom can be excited in the whole
system of interacting atoms due to Rydberg blockade. Pulses 2–6 invert the state of the target qubit if the control qubit is initially prepared in
state ∣¯ñ0 and remains in its ground state during the whole pulse sequence.
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denoted as ∣ ñ0 and ∣ ñ1 . The ground state of a mesoscopic
ensemble which consists of N atoms is denoted as
∣¯ ∣ñ = ñ0 00 ... 0

N

1 . In the regime of Rydberg blockade we can

use adiabatic passage to deterministically excite a collective state
with a single Rydberg excitation ∣ ¯ ∣ñ = å ñ= r1 00 ... ... 0

N j
N

j
1

1 .

This state can be then mapped onto the other hyperfine sublevel
by a coherent single-atom π pulse. Therefore we consider the
states ∣¯ ∣ñ = ñ0 00 ... 0 and ∣ ¯ ∣ñ = å ñ=1 00 ... 1 ... 0

N j
N

j
1

1 as logical

states of the ensemble qubit. We have to take into account the
accumulation of the N-dependent dynamic phase during the first
adiabatic sequence, as shown in figure 1(f). If the adiabatic
excitation of the ensemble into the Rydberg state is followed by
coherent π pulse at ∣ ∣ñ  ñr 1 transition, the final qubit state will

be ñ = å ña
=1 e 00 ... 1 ... 0

N j
N

j
1 i

1
N where aN is the accumu-

lated phase, which depends on the number of atoms in the
ensemble and parameters of laser excitation (Rabi frequencies
and pulse shapes). Our simulations of quantum tomography
(given below) confirm that this phase accumulation does not
affect the gate performance, but this is true only in the case when
switching the detuning from the intermediate level in the double
STIRAP sequence is used.

A scheme of the single-qubit rotation around x and y axes
on a Bloch sphere is shown in figure 2(a). The states r0 and r1
are two Rydberg levels. Strong Rydberg interaction ensures
that in the ensemble there can be only one Rydberg excitation.
Notably, excitation of two atoms into different Rydberg states
r0 and r1 is also blocked due to strong Rydberg interaction. p+N
and p-

N indicate STIRAP in the N-atom ensemble with
opposite signs of the detuning. The π and p3 pulses are
rotations ( )pRX and ( )pR 3X , respectively. The p3 pulse is
used instead of a π pulse for compensation of the additional
phase shift of the state ∣ ñ1 , arising from combined action of
two π pulses. The transition between two Rydberg levels r0
and r1 is described by a Rabi rotation matrix:
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The qubit rotations around the x and y axes on a Bloch sphere
(des) can be represented as ( ) ( )q q= -R R , 0x and

( ) ( )q q p= -R R , 2y . The scheme of a CNOT-type gate,
shown in figure 2(b), is based on the effect of Rydberg
blockade. It is a modification of the amplitude-swap gate for
two atoms, which has been experimentally demonstrated in
[31]. The pulse sequence 2–6 acting on a target qubit inverts
its quantum state, but only in the case where the control qubit
remains in state ∣ ñ0 and is not excited into the Rydberg state. If
the control qubit is initially prepared in the state ∣ ñ1 , its
Rydberg excitation by pulse 1 blocks transitions to the
Rydberg states for a target qubit, and leaves it in its initial
state. The control qubit is returned back to the ground state by

pulse 7. This scheme can be converted to a conventional
CNOT by adding a NOT operation on the control qubit before
and after the two-qubit gate.

3. Simulated quantum tomography of single-qubit
and two-qubit quantum gates

In the present work we have performed a full numeric
simulation of the single-qubit and two-qubit quantum process
tomography for mesoscopic atomic ensembles. Initially all of
the ensembles are assumed to be prepared in the ground state
∣¯ ∣ñ = ñ0 00 ... 0 . We have numerically simulated all procedure
of quantum tomography including preparation of different
basis states of the atomic ensembles, implementation of var-
ious quantum gates and tomographic measurements of the
final quantum states. The basic principles of quantum tomo-
graphy are described in [16] and the process fidelity of a
Rydberg blockade gate between single-atom qubits was
simulated in [32]. A brief review of quantum tomography for
two-level qubits is presented in the appendix.

3.1. Quantum state tomography

The purpose of quantum-state tomography is reconstruction of
the density matrix of a two-level qubit. A single-qubit density
matrix can be written as ( )( ) ( )r s r s= å = Tri i i1

1

2 1
4

1 where si are
four Pauli matrices s=I 0, s=X x, s=Y y and s=Z z. This
means that we can express the quantum state through four
quantum mechanical observables. A similar procedure is used
for two-qubit state tomography. We represent the two-qubit
density matrix as [( ) ]( )( ) ( )r s s r s s= å Ä Ä= Tri j i j i j2

1

4 , 1
4

2

and perform 16 measurements of the observables.

3.2. Quantum process tomography

The purpose of quantum process tomography is reconstruc-
tion of the quantum process, which transfers the initial state of
a quantum system into the final state. Every quantum process
can be considered as a transformation of the density matrix:

( ) ( )r e r¢ = . 4

For a fixed set of operators Ẽi, this expression can be rewritten
as

( ) ˜ ˜ ( )†år e r c r¢ = = E E . 5
i j

ij i j
,

Any quantum process can be represented by a χ-matrix which
is 4 × 4 for single-qubit process and 16 × 16 for two-qubit
operations. The quantum process tomography requires the
following steps: (i) preparation of initial basis states of the
quantum system; (ii) quantum operation with qubits prepared in
all basis states; (iii) quantum-state tomography of the final states
of the qubits after the quantum process under study is finished.
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3.3. Maximum-likelihood reconstruction and fidelity

Both quantum-state tomography and quantum process tomo-
graphy can lead to non-physical density or process matrices.
A maximum-likelihood reconstruction [17, 33–35] is the
procedure which allows finding the correct matrix c̃ which is
closest to the measured one. To estimate the fidelity of the
quantum-state preparation or quantum gate we compare the
reconstructed matrix with the ideal matrix cid which we
expect to be the outcome of the operation. We define the gate
fidelity through the trace distance between the matrices as

( ˜ ) ( ˜ ) ( )c c c c= - - -+F 1
1

2
Tr . 6id id

The gate error is expressed as - F1 .

3.4. Single-qubit gates

We have numerically studied the fidelity of the quantum-state
preparation and single-qubit gates NOT-X, NOT-Y, NOT-Z
and a Hadamard gate with mesoscopic atomic ensembles. The
schemes of the NOT-Z gate and the Hadamard gate are shown
in figure 3. A Hadamard gate is a single-qubit ( )p-R 2Y

rotation combined with a NOT-Z gate, which is produced by
two π pulses 1 and 5, acting as a p2 pulse.

Initially, we prepared the ensemble into the basis states

( ) ( ) ( )r r r= = =1 0
0 0

; 0 0
0 1

; 1 1
1 1

andH V D
1

2

( )r = -1 i
i 1R

1

2

by applying single-qubit rotations of the initial ground state of
the ensemble. Then we have simulated the single-qubit gates
and the x and y rotations required for quantum-state
tomography. The probabilities P0 to find the ensemble in
the ground state and P1 to find a single atom in the ensemble
in the state ∣ ñ1 have been calculated. The c̃-matrix is
reconstructed using a maximum-likelihood approximation,
and the gate fidelity was finally calculated using equation (6).

The reconstructed c̃-matrices for initial state preparation,
NOT-X, NOT-Y, NOT-Z and Hadamard gates are presented
in left panel of figure 4 for an atomic ensemble with N = 4
atoms. The gate errors of the single-qubit gates, calculated for
atomic ensembles with N = 1–4 atoms, are shown in the right
panel of figure 4. Regardless of the number of atoms in the
ensemble, the gate errors below 10−4 have been revealed
from the simulations. The small variations of the gate fidelity
with the number of atoms, which can be seen in figure 4(b),
are not of significant importance for us.

In realistic experimental conditions the fidelity of the gates
can be deteriorated by a number of undesirable effects, which
include finite lifetimes of Rydberg and intermediate excited
states, finite Rydberg interaction strength which can lead to a
blockade breakdown and destruction of the coherence, fluc-
tuations of laser frequency and intensity. The influence of these
effects has been discussed in our previous papers [14, 15, 36].
We expect that the obtained values of the single-qubit fidelity
are close to the upper limit which requires precise control of the
experimental conditions. We also believe that these simulations
confirm the validity of the schemes of quantum logic gates
based on adiabatic passage and Rydberg blockade.

3.5. Two-qubit gate

A two-qubit process tomography is required for complete
reconstruction of two-qubit operations. It includes quantum-
state tomography of 16 bipartite states of two-qubit systems,
which is extremely time-consuming for mesoscopic ensem-
bles of multilevel atoms. The fidelity of a CNOT gate can
be estimated by measurement of the fidelity of the Bell
states, which are created by Hadamard gate applied to a
control qubit, and a subsequent CNOT applied to a pair of
qubits.

The Bell states of a bipartite quantum system are defined
as following:

(∣ ∣ )

(∣ ∣ )

(∣ ∣ )
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2
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2
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1

2
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1

2
01 10 . 7

Figure 3. (a) Scheme of the Hadamard gate with mesoscopic atomic
ensemble. Pulses 1–5 act between the qubit states ∣ ñ0 , ∣ ñ1 and the
Rydberg states r0 and r1. Pulses 2 and 4 are two-photon STIRAP
sequences with opposite signs of the detuning from the intermediate
state. Pulses 1 and 5 are coherent single-atom π pulses. Pulse 3 is a
microwave or Raman transition between Rydberg r0 and r1 with the
area p 2 and phase p 2. Only one Rydberg excitation in the
ensemble is allowed due to Rydberg blockade. (b) Scheme of the
NOT-Z gate with a mesoscopic atomic ensemble. Pulse 1 is a
coherent p2 pulse between the qubit state ∣ ñ1 and Rydberg state r1.
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Figure 4. (a) Numerically simulated c̃-matrices for single-qubit gates (identity, NOT-X, NOT-Y, NOT-Z and Hadamard) with N = 4 atoms
in the ensemble. (b) Dependencies of numerically calculated gate errors of single-qubit gates on the number of atoms in the ensemble.
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Figure 5. (a) Scheme of configurations of two interacting mesoscopic ensembles used in the simulation. (b) The reconstructed density
matrices of the Bell states. (c) The calculated errors of Bell states for different configurations of two interacting atomic ensembles.
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We have simulated generation of the Bell states as following
sequence:

(1) Preparation of two ensemble qubits into the states ∣¯ ¯ñ00 ,
∣¯ ¯ñ01 , ∣ ¯ ¯ñ10 and ∣ ¯ ¯ñ11 by ( )pR 2y rotations of the control
and target qubits. Both qubits are initially in the
state ∣¯ ¯ñ00 .

(2) Single-qubit Hadamard gate with a control ensemble
qubit.

(3) CNOT-type gate as shown in figure 2(b).
(4) Quantum state tomography of the final state of two-

qubit system.

The density matrices of the generated Bell states after
using maximum-likelihood reconstruction are shown in
figure 5. The fidelity of the Bell states has been calculated for
N = 2–4 interacting atoms in the following spatial config-
urations, as shown in figure 5(a): (A) both control and target
ensemble contain a single atom; (B) control ensemble con-
tains one atom and target ensemble contains two atoms; (C)
control ensemble contains two atoms and target ensemble
contains one atom; (D) both control and target ensemble
contain two atoms. High fidelity of the state preparation has
been revealed for all Bell states regardless of the configuration
of interacting ensembles. This ensures that the infidelity of the

CNOT-like gate is kept below 10−4, as is required for
quantum computing.

For the sake of completeness, we have simulated two-
qubit quantum process tomography of the CNOT-type gate
for the simplest case of two interacting atoms (case (A) in
figure 5(a)). A seven-pulse sequence for a CNOT-type gate,
shown in figure 2(b), was used in the simulation. The
reconstructed c̃-matrix is shown in figure 6. The calculated
gate error is below ´ -4 10 5.

4. Error sources

Our simulations have demonstrated high fidelity of the gates,
below 10−4 for single-qubit gates and for generation of two-
qubit Bell states. However, in real experiments, a number of
error sources may increase the gate errors. The most impor-
tant limiting factors for quantum computing with Rydberg
atoms are the following:

(1) Rydberg blockade breakdown. The atoms must be
prepared in tightly focused optical dipole traps to ensure
the regime of perfect Rydberg blockade [36]. Recent
experiments [37] have demonstrated the coherence of
ensemble qubit states and a strong Rydberg blockade
between spatially separated ensembles. Quantum gates
and entanglement of two ensemble qubits have not yet
been demonstrated. One issue is that the atomic
interactions in the ensemble of multilevel atoms with
variable spacings and interactions strengths can lead to
dephasing and blockade breakdown [38], this problem
requires further investigation.

(2) Finite lifetime of the Rydberg state. Rydberg atoms with
~n 100 have long room-temperature lifetimes of

around 200 microseconds [39]. However, the decay of
the Rydberg state during temporary Rydberg excitation
substantially reduces the gate fidelity. This effect can be
suppressed by reducing the interval when the atom is
kept in the Rydberg state, but at a price of higher Rabi
frequencies which requires higher laser powers.

(3) Finite lifetime of the intermediate excited state. The first
excited alkali-metal states typically have short lifetimes
of tens of nanoseconds. Spontaneous decay of these
states destroys the coherence of multi-photon excita-
tion. This problem can be partly avoided by an increase
of the detuning from the intermediate excited state for
two-photon excitation.

(4) Laser intensity fluctuations. The scheme which we
propose is sensitive to asymmetry of the pulses in
double STIRAP sequence [14, 15], but is much less
sensitive to small variations of the Rabi frequency for
different double STIRAP sequences which can be
caused by slow changes of the laser intensity between
subsequent gates.

Figure 6. The numerically simulated c̃-matrix for a CNOT-type gate
for two interacting atoms. The scheme of the gate is shown in
figure 2(b).
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(5) Finite temperature of the atoms in the trap. In our
simulations we assumed zero temperature of the trapped
atoms (frozen Rydberg gas). The Doppler shift due to
the finite temperature of the atoms may result in slightly
detuned Rydberg excitation leading to the errors below
10−5 at temperatures m100 K [40]. Another problem is
dephasing of the Rydberg state relative to the ground
state during gate operation. Detailed analysis of this
effect is given in [40].

(6) Dephasing of the collective state of the superatom.
Fluctuations of the phases of the lasers and the spatial
variation of the laser intensity may lead both to
homogeneous and inhomogeneous dephasing of the
collective states of the atomic ensembles containing
randomly distributed atoms [41].

Strong Rydberg–Rydberg interaction is required to
achieve the regime of perfect Rydberg blockade both within
the atomic ensemble and for two interacting ensembles.
Simultaneous excitation of two atoms into the states ∣ ñr r0 0 ,
∣ ñr r1 1 or ∣ ñr r0 1 must be completely suppressed. The long-range
interaction strength can be parameterized with a C6 coefficient
as ( ) ( )¢ = ¢V n n C R, n n

6
, 6 with R the atomic separation. For Cs

nS states the optimum gate fidelity is obtained for S80 [42],
and the interaction strengths for ∣ ∣ñ = = ñr S m80 , 1 2 ,0 1 2

∣ ∣ñ = = ñr S m81 , 1 21 1 2 are ( ) =C 3.26
80,80 , ( ) =C 5.16

80,81 ,
( ) =C 3.76
81,81 , in units of m10 MHz m6 6. Rydberg nS states

can be accessed starting from a ground S state using two-
photon STIRAP pulses. Although the interaction of nP states
is not isotropic it can be made isotropic in one- or two-
dimensional lattices by orienting the quantization axis
perpendicular to the lattice symmetry plane. For Cs atoms the
optimal state is P112 3 2 [42], and the interaction strengths for
∣ ñr0 ∣= = ñP m112 , 3 23 2 , ∣ ∣ñ = = ñr p m113 , 3 21 3 2 at 90

deg. to the quantization axis are ( ) =C 2506
112,112 ,

( ) =C 8206
112,113 , ( ) =C 2706

113,113 , in units of m10 MHz m6 6.
For both nS and nP states a strong interaction is obtained for
all involved Rydberg states as desired. The control over the
interaction strength using rf-assisted Förster resonances [43]
can be also of interest.

The pulse connecting ∣ ∣ñ ñr r,0 1 can be implemented as a
two-photon electric dipole transition at microwave frequencies
via a neighboring opposite parity state or as a two-photon laser
Raman transition. The large transition dipole moments of
Rydberg states scaling as n2 render fast microwave pulses
straightforward to implement. At n= 80, a detuning of 1 GHz
from the intermediate state, and a small m -1 W cm 2 microwave
power level, gives ~25 MHz two-photon Rabi frequency.

To estimate the effect of the finite lifetimes of the
intermediate excited and Rydberg states on the gate fidelities
we have simulated a STIRAP in an atomic ensemble using the
master equation [14, 44]. The calculated population error after
the first STIRAP sequence with the parameters from figure 1
is substantially increased if linewidth of the intermediate state

( )g p =2 5 MHz and decay of the Rydberg state with
( )g p =2 0.8 kHzR are taken into account, as shown in

figure 7 (circles).
To reduce this effect, we considered short pulses with

large Rabi frequencies and detunings from the intermediate
state. We have taken =T 1000 ns, ( )d p =2 2 GHz, and

( )pW =2 500 MHz. The calculated population errors are
shown in figure 7 for N = 1–4 atoms. Although the error
exceeds 10−4, which is required for quantum error correction,
it is still smaller than ´ -2 10 3 regardless of the number of
atoms.

We have simulated the quantum process tomography of
a Hadamard gate taking into account finite lifetimes of the
intermediate and Rydberg states using a master equation for
the density matrix in the conditions of figure 7. Atomic
ensembles with a small number of atoms N = 1 and N = 2
were considered. For small detuning from the intermediate
state ( )d p =2 200 MHz the calculated error was higher
than 10%. For increased detuning ( )d p =2 2000 MHz and
a reduced time interval between the laser pulses ( = -t 1701

ns and =t 1702 ns) the calculated error is 0.4% for N = 1
and 2.1% for N = 2. The time interval between the pulses 1
and 5 from figure 2 was reduced to 600 ns. This error
includes finite accuracy of the state preparation and mea-
surement. Quantum gate error can be further reduced by
increasing the laser intensities and detuning from the
intermediate state along with excitation of Rydberg states
with larger lifetimes and shortening the time intervals
between the laser pulses [5].

5. Summary

The simulated single-qubit and two-qubit quantum process
tomography confirms usability of the quantum gates based
on adiabatic passage and Rydberg blockade with

Figure 7. The calculated dependence of the error of population
transfer on the number of atoms taking into account finite linewidths
of the intermediate excited state ( )g p =2 5 MHz and Rydberg state

( )g p =2 0.8 kHzR . Circles: =T 20 μs, ( )d p =2 200 MHz, and
( )pW =2 50 MHz. Squares: =T 1000 ns, ( )d p =2 2 GHz, and
( )pW =2 500 MHz.
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mesoscopic atomic ensembles. High fidelity of the gates
required for quantum computing can be achieved by use of
optimized shapes of the STIRAP pulses. The gate error was
found to be below 10−4 for single-qubit gates and for gen-
eration of two-qubit Bell states. For experimental imple-
mentation, as it has been shown in our previous works
[14, 15, 36], it would be necessary to increase the detuning
from the intermediate excited state up to 2 GHz [14] to
reduce the effect of its short lifetime. The proposed scheme
of the quantum gates is insensitive to the exact value of Rabi
frequency of STIRAP pulses, provided the adiabaticity
condition is fulfilled, but is sensitive to asymmetry of the
pulses in the STIRAP sequence [14]. Atoms must be pre-
pared in tightly focused optical dipole traps to ensure the
regime of perfect Rydberg blockade [36].
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Appendix: Quantum tomography of single-qubit and
two-qubit gates in a two-level system using Rabi
rotations

A.1. Interaction of a two-level qubit with resonant laser
radiation and rotations on a Bloch sphere

The quantum state of a two-level qubit can be written as

( )

q q
ñ + ñ = ñ + ñj g⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥c c0 1 cos

2
0 e sin

2
1 e .

A.1

0 1
0 i 0 i0

Here the angles q0 andj0 define the position of the qubit on a
Bloch sphere and γ is an unimportant phase factor which can
be omitted. The interaction with resonant laser radiation is
described by the system of two differential equations for the
probability amplitudes:

( )˙
˙ ( )*= W

W
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

c
c

c
ci

1

2
0

0
. A.20

1

0

1

Here W = W je0
i is a complex Rabi frequency which takes

into account the phase of the laser field. The solution of the
system (A.2) is expressed as a Rabi rotation of the initial

vector state:

( ) ( )( )

( )

q q

q q
q j

¢

¢
= =

j

j

-⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
c

c

c
c R

c
c

cos
2

ie sin
2

ie sin
2

cos
2

, .

A.3

0

1

i

i

0

1

0

1

Here q = -W T0 , where T is the time duration of interaction
of the qubit with laser radiation.

The qubit rotations are described by the rotation matrices:

( )

( )

( )

( )

q
q
s

q q

q q

q
q
s

q q

q q

q
q
s

= - =
-

-

= - =
-

= - =
q

q

-

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

R

R

R

exp i
2

cos
2

i sin
2

i sin
2

cos
2

exp i
2

cos
2

sin
2

sin
2

cos
2

exp i
2

e 0
0 e

.

A.4

X x

Y y

Z z

i 2

i 2

For x and y rotations from equation (A.4) we find
( ) ( )q q= -R R , 0x and ( ) ( )q q p= -R R , 2y .

Table 1 Single-qubit tomography

Coefficient Action on qubit Measured value

l1 I +P P0 1

l2 ( )p-R 2y -P P0 1

l3 ( )pR 2x -P P0 1

l4 I -P P0 1

Table 2. Two-qubit state tomography

Coefficient

Action on
control
qubit

Action on
target qubit Measured value

l11 I I + + +P P P P00 01 10 11

l12 I ( )p-R 2y - + -P P P P00 01 10 11

l13 I ( )pR 2x - + -P P P P00 01 10 11

l14 I I - + -P P P P00 01 10 11

l21 ( )p-R 2y I + - -P P P P00 01 10 11

l22 ( )p-R 2y ( )p-R 2y - - +P P P P00 01 10 11

l23 ( )p-R 2y ( )pR 2x - - +P P P P00 01 10 11

l24 ( )p-R 2y I - - +P P P P00 01 10 11

l31 ( )pR 2x I + - -P P P P00 01 10 11

l32 ( )pR 2x ( )p-R 2y - - +P P P P00 01 10 11

l33 ( )pR 2x ( )pR 2x - - +P P P P00 01 10 11

l34 ( )pR 2x I - - +P P P P00 01 10 11

l41 I I + - -P P P P00 01 10 11

l42 I ( )p-R 2y - - +P P P P00 01 10 11

l43 I ( )pR 2x - - +P P P P00 01 10 11

l44 I I - - +P P P P00 01 10 11

10

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 114007 I I Beterov et al



We can prepare the initial single-qubit states r = ⎜ ⎟
⎛
⎝

⎞
⎠

1 0
0 0

;H

r = ⎜ ⎟
⎛
⎝

⎞
⎠

0 0
0 1

;V ( )r = 1 1
1 1D

1

2
and ( )r = -1 i

i 1R
1

2
starting from

rH by single-qubit rotations:

( ) ( )
( ) ( )
( ) ( ) ( )

†

†

†

r p r p

r p r p

r p r p

=

=

= - -

R R

R R

R R

2 2

2 2 . A.5

V Y H Y

D Y H Y

R X H X

A.2. Single-qubit state tomography

A single-qubit density matrix can be written as
( )( ) ( )r s r s= å = Tri i i1

1

2 1
4

1 where si are four Pauli matrices I,
sx, sy and sz. That means that we can express the quantum
state through four quantum mechanical observables. Two of
them can be obtained by a measurement of the probabilities
P0 and P1 to find a qubit in the state ∣ ñ0 or ∣ ñ1 :

( )
( ) ( )

( )

( )

l s r r r
l s r r r

= = + = +

= = - = -

P P

P P

Tr

Tr . A.6z

1 0 1 00 11 0 1

4 1 00 11 0 1

The other observables can be expressed through the
probabilities P0 and P1 to find a qubit in the state ∣ ñ0 or ∣ ñ1
after single-qubit rotations around X and Y axes. From the
expressions

( ) ( ( ) ( ))

( ) ( ( ) ( )) ( )
( ) ( )

†

( ) ( )
†

l s r s p r p

l s r s p r p

= = - -

= =

R R

R R

Tr Tr 2 2

Tr Tr 2 2 . A.7

x z y y

y z x x

2 1 1

3 1 1

we find that after ( )p-R 2y and ( )pR 2x rotations we should
measure the values l = -P P2,3 0 1 and reconstruct the density

matrix as ( )r l s= å =i i i1
1

2 1
4 .

Equations (A.6) and (A.7) can be presented in a table
form, see table 1.

A.3. Two-qubit state tomography

A two-qubit density matrix is written as:

[( ) ]( ) ( )( ) ( )år s s r s s= Ä Ä
=

1

4
Tr . A.8

i j
i j i j2

, 1

4

2

We can reconstruct it as

( ) ( )( ) år l s s= Ä
=

1

4
. A.9

i j
ij i j1

, 1

4

The coefficients lij are expressed through the measured
probabilities P00, P01, P10, P11 to find the bipartite system
in states ∣ ñ00 , ∣ ñ01 , ∣ ñ10 and ∣ ñ11 , respectively. The
sequence of measurements required to find lij is presented
in table 2.

A.4. Single-qubit process tomography

To perform a single-qubit process tomography, we select an
operator basis ˜ s=Ei i with four Pauli matrices I, sx, sy and sz.

The action of the unitary quantum gate U on the density
matrix of the initial state is expressed as

( ) ( )†r e r r¢ = = U U . A.10

For the basis states r = ⎜ ⎟
⎛
⎝

⎞
⎠

1 0
0 01 , r = ⎜ ⎟

⎛
⎝

⎞
⎠

0 1
0 02 , r = ⎜ ⎟

⎛
⎝

⎞
⎠

0 0
1 03 ,

and r = ⎜ ⎟
⎛
⎝

⎞
⎠

0 0
0 14 it has been shown that the χ-matrix can be

reconstructed through the block matrix built of the density
matrices of the quantum states, measured after the performed
quantum gate [16]:

( )c
r r

r r
= L

¢ ¢

¢ ¢
L

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ . A.111 2

3 4

Here the block matrix
s

s
L =

-
⎛
⎝⎜

⎞
⎠⎟

I
I
x

x

1

2
.

In the experiment we prepare the qubit into the basis
states rH , rV , rD, rR and finally get the states r¢H , r¢V , r¢D, r¢R
after the gate operation. To use equation (A.11), we need to
find the matrices r¢1, r¢2, r¢3, r¢4 through the following trans-
formation:

( )
* *

r

r

r

r

r

r

r

r

¢

¢

¢

¢

= - -
- - -

¢

¢

¢

¢

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

a a
a a

1 0 0 0
1 i
1 i

0 1 0 0

. A.12

H

V

D

R

1

2

3

4
Here ( )= +a i11

2
.

A.5. Two-qubit process tomography

For two-qubit process tomography, we select the operator
basis ˜ ( ) s s= Ä- +E i j i j4 1 with = -i j, 1 4. The basis states
rij are matrices with 1 at the ith row and jth column. The χ-
matrix is reconstructed using a block matrix of the measured
density matrices [16, 19]:

( )c

r r r r

r r r r

r r r r

r r r r

=

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
K K. A.13T

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44
Here = LK P , [ ]= Ä ÄP I M I , L = 1

4
( ) ( )s s s s s sÄ + Ä Ä Ä + ÄI IZ X X Z X X and

( )=

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
M

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

. A.14

Similarly to a single-qubit tomography, in the experiment we
prepare two qubits in the bipartite physical basis rAB with

{ }=A B H V D R, , , , . To use equation (A.13), it is
necessary to find the density matrices r¢ij after measurement

of the final states r¢AB of two qubits by the following
transformation [19]:
The quantum process is reconstructed as ( )r e r¢ = =

˜ ˜c rå
+E Ei j ij i j, both for single-qubit and two-qubit tomography.
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A.6. Maximum-likelihood reconstruction

The density matrices and the χ-matrices reconstructed from
measurements may be non-physical. The idea of a maximum-
likelihood approximation is to find the matrix which is closest
to the measured one. Any physical single-qubit density matrix
can be written as ˜ ( ) ( ) ( )r = +

T T1 1 1 where

( )( ) =
+

⎛
⎝⎜

⎞
⎠⎟T

t
t t t

0
i

. A.161 1

3 4 2

Here { }

=t ti is a vector of real parameters. To find the

density matrix ˜ ( )r 1 which approximates the measured density

matrix ( )r 1 we find the minimum of the function

( ) ∣ ˜ ( ) ∣ ( )( ) ( ) 
å r rD = -r

=

t t . A.17
m n

mn mn
, 1

2
1 1 2

We keep constraints ( ˜ )( )r =Tr 11 directly in the minimization
procedure. Similar approach is used for two-qubit density
matrices.

For reconstruction of the single-qubit χ-matrix we use a
parametrization ˜ ( ) ( ) ( )r = +

T T1 2 2 with

( )( ) =
+
+ +
+ + +

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
T

t
t t t
t t t t t

t t t t t t t

0 0 0
i 0 0
i i 0
i i i

. A.182

1

5 6 2

7 8 9 10 3

11 12 13 14 15 16 4

and find minimum of the function

( ) ∣ ˜ ( ) ∣ ( )
 

ål c cD = -c
=

t t, . A.19
m n

mn mn
, 1

4
2

We keep

˜ ( ) ˜ ˜ ( )


å c =
=

+
t E E I . A.20

m n
mn m n

, 1

4

4

in the minimization procedure to ensure that the quantum
process is trace-preserving. Here I4 is a four-by-four identity
matrix.

Equations (A.18) and (A.19) are easily generalized for
two-qubit quantum process tomography, where the vector

{ }

=t ti contains 256 components. To reduce computation

time, in our simulations we have used constraints (A.20) only
for diagonal elements of the identity matrix.

A.7. Gate fidelity

The CNOT-type gate, shown in figure 2(b), is represented as

( )=-

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
U

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

. A.21CNOT type

To estimate the gate fidelity, we first find the ideal process
matrix for this CNOT-type gate. The transformation of the
density matrices of the basis states is written as

†r r¢ = - -U Uij ijCNOT type CNOT type where rij are matrices with 1
at ith row and jth column. The χ-matrix is found from

( )

* * * *
* *

* * * *

* *
* * * *

* * * *
* *

* *

r

r

r

r

r

r

r

r
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r

r

r
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r

r

r
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r
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r

r

r

r

r

r

r

r

r

r

r
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¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢
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- -
- -

- - - - -
- - -

- - - - - - - - -
- -

- - -
- - - - - - - - -

- -
- - - - - - - - - - -

- - -
- - -

=
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¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

a a
a a

a a a a a a a a

a a

a a a a a a a a
a a i

a a
a a a a a a a a

a a i
a a a a a a a a

a a
a a

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 i 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 i 0 0 0
i 2 i 2 i 2 i 2 1 i i 1

1 i 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 1 2 1 2 1 2 1 i i 1
0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 i 0 0 0
1 2 1 2 1 2 1 2 1 i i 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
i 2 i 2 i 2 i 2 1 i i 1

0 0 0 0 0 0 0 1 0 0 0 i 0 0
0 0 0 0 1 i 0 0 0 0 0 0 0 0
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. A.15
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equations (A.13) and (A.14).

( )

c

=

-
-

- - -
-

-

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

1

4

1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

A.22

CNOT type

The fidelity of a quantum gate can be measured by
comparison of the reconstructed process matrix with the ideal
matrix

( ˜ ) ( ˜ ) ( )c c c c= - - -+F 1
1

2
Tr . A.23id id

The fidelities of the single-qubit gates have been calculated
similarly. To estimate the fidelities of the Bell states, we used
a similar expression:

( ˜ ) ( ˜ ) ( )r r r r= - - -+F 1
1

2
Tr . A.24id id

The gate error is expressed as - F1 .
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